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Abstract 

 
The Intrusion detection system (IDS) is a security 

technology that attempts to identify network intrusions. 
Defending against multistep intrusions which prepare 
for each other is a challenging task. In this paper, 
alerts classified into predefined classes. Then, the 
Context-Free Grammar (CFG) was used to describe 
the multistep attacks using alerts classes. Based on the 
CFGs, the modified LR parser was recruited to 
generate the parse trees of the scenarios presented in 
the alerts. The experiments were performed on two 
different sets of network traffic traces, using different 
open-source and commercial IDSs. The detected 
scenarios are represented by Correlation Graphs 
(CGs). The experimental results show that the CFG 
can describe multistep attacks explicitly and the 
modified LR parser, based on the CFG, can construct 
scenarios successfully.  
 
1. Introduction 
 

The study of IDS has become an important aspect 
of network security. When the IDS detects a set of 
attacks, it will generate many alerts referring to 
security breaches. Unfortunately, the IDS can not 
deduce anything from these separated attacks. As a 
result, alert correlation is an important solution to link 
separated attacks, to give alerts another meaning, and 
to infer attack scenarios. 

Alert correlation function is to find out the logical 
relationships among the alerts. Attackers are likely to 
launch a series of attacks against their targets. 
Intelligent hackers are more likely to disguise their real 
purpose by launching many other minor attacks. Alert 
correlation is used to correlate alerts based on logical 
relationships among the alerts. This function will 
provide the security analysts with a great insight into 
where the initial attacks came from and where they 
actually end up.  

An interesting method is the work of Ning et al. [1]. 
Ning et al. were a proposed alert correlation model 
based on the observation that most intrusions consist of 
many stages, with the early stages preparing for the 
later ones. They were collected alerts from IDS, 
correlated off-line, and tried to draw a big picture 
(through CGs) of what happens in the network. 
However, this method has overlooked, or unable to 
resolve, the following shortcomings. First, the graph 
explosion problem that occurs in the generated CGs 
makes the resulted graphs complex and difficult to 
understand. Second, huge number of rules used to draw 
these graphs representing alert’s prerequisites and 
consequences. And finally, the affects of the missed 
attacks by IDS yield separated CGs.  

The primary focus of this paper is on addressing 
these disadvantages. We used the compiler techniques 
[2] to recognize the scenarios in the raw alerts. Put 
another way, after categorizing alerts into classes (i.e. 
classification); the scenarios are represented by 
context-free grammars. These grammars are used to 
build LR tables. The LR tables and the raw alerts are 
fed to LR parser trying to construct attack scenarios; 
the standard LR parser algorithm is modified to meet 
our requirements. The resulted scenarios visually 
represented by correlation graphs. Instead of repairing 
a broken scenario afterwards, our method can tolerate 
missed attacks at the same time of correlation.  

The remainder of this paper is organized as follows. 
Section 2 presents related works. Section 3 states basic 
concepts and assumptions. Section 4 proposes our 
correlation engine. Section 5 gives the empirical 
results. The discussion presents in section 6 and 
section 7 concludes the paper. 
 
2. Related Works 
 

Many alert aggregation and correlation approaches 
have recently been proposed with the goal of reducing 
the false alerts rates of the IDSs and building attack 
scenarios to recognize attack plans. Dain et al. [3] used 



 

data mining approach to combine the alerts into 
scenarios in real time. Qin et al. [4] presented an alert 
correlation system combining a Bayesian correlation 
with a statistical correlation. The probabilistic alert 
correlation [5] based on the similarities between alerts 
to correlate them. Several researchers have studied the 
attack graph generation automatically [6]. The attack 
graphs represent the possible paths the attackers may 
take in intrusions. 

With respect to the related works, in this paper, a 
novel correlation method is proposed which uses 
parsing techniques to extract attack scenarios from 
alerts. To our best knowledge, the using of LR parser 
techniques has not been addressed in the alert 
correlation problem. 

 
3. Preliminaries 
 

This section reviews relevant concepts and states 
our assumptions. Section 3.1 introduces classification 
and section 3.2 presents our model to represent 
scenarios. Section 3.3 discusses addresses similarity. 

 
3.1. Alerts Classification 
 

The alert classification scheme is designed to 
categorize alerts into groups that most effectively 
indicate their stages in multistage attacks. Each class 
has its name indicating the general category; the set of 
classes will be denoted as CLS. The CLS set contains 
the following classes: enumeration (EN), host probe 
(HP), service probe (SP), service compromise (SC), 
user access (UA), root or administrator access (RAA), 
DoS (DS), system compromise (SYC), sensitive data 
gathering (SDG), active communication remote (ACR), 
Trojan activity (TA), and DDoS (DDS). Many types of 
Snort IDS [7] alerts and RealSecure IDS [8] alerts have 
manually classified and their descriptions were taken 
from [9], [10] respectively.  

 
3.2. Scenarios Representation 
 

Many attacks languages proposed to represent the 
attacks and to facilitate correlation process. In this 
paper, we have modeled the attacks using CFG. 

Definition 1. A context-free grammar CFG is a 
quadruple such that CFG = <N, T, P, S>, where N is a 
finite set of nonterminals which belong to CLS and 
they are usually start with capital letter, T is a set of 
terminals representing the alerts and the terminals 
usually start with small letter, P is a finite set of 
productions, and S is the start symbol of CFG which 
represents the scenario name; here unusually S∉N. 

Definition 1 formally describes the grammar from 
our point of view. An element in V =N ∪  T is called 
grammar symbol. The productions in P are pairs of the 
form X→α, where X ∈CLS and α∈V*. Put another 
way, the left hand side symbol (LHSS) X is a 
nonterminal, and the right hand side symbol (RHSS) α 
is a string of grammar symbols. An empty right hand 
side symbol (empty string) is denoted as an ε. 

Example 1. Consider a scenario in which the attacker 
probe the hosts to see which host is active, probe the 
services, compromise a service, install a Trojan and 
launch it, and finally use this Trojan to launch a DDos 
attack. This scenario can be noted in DARPA dataset 
[11]. It can simply be represented, assuming 
RealSecure [8] alerts, in our model as follows: 

Scenario → HP SP SC ACR TA DDS 
HP → icmp_echo_request HP | ε 
SP → sadmind_ping SP | ε 
SC → admind SC  

| sadmind_amslverify_overflow SC | ε 
ACR → rsh ACR | ε 
TA → mstream_zombie TA | ε 
DDS → stream_dos 

Some points can be noted from this grammar. First, 
the order of the RHSS in the first rule specifies the 
time order of the attacks. Second, we put the ε (i.e. the 
empty string) in each rule to pass the missed attacks by 
IDS. In addition, the passing of missed attacks leads to 
generate a single CG instead of generating separated 
CGs. Third, the attacker may try the same attack (or 
other attacks from the same class) until he succeeds. 
As a consequence, we put the LHSS after each 
terminal to allow loops. Fourth, the DDS (the last rule) 
presented without a loop and the ε rule assuming it is 
neither can be missed nor duplicated (RealSecure 
triggers one alert for this attack). Finally, the 
frequently use of the ε makes this scenario capable of 
accepting only the last attack. For this reason, a 
combination of the first rule could solve this problem.  

 
3.3. Addresses Similarity 
 

An alert A can be characterized by a set of features. 
Assume that A.fi represents the ith feature of an alert A. 
These features are: alert type (or type for short), source 
IP, Destination IP, and time stamp. The table of alerts 
can be denoted as T. We consider only IPv4 addresses. 

Definition 2. The addresses similarity between any 
two alerts can be computed as follows  
IP_Sim(Ai,Aj)=Sim_Src(Ai,Aj)+Sim_Dst(Ai,Aj)+Sim(Ai.
DstIP,Aj.SrcIP), where: (1) Sim_Src(Ai,Aj) and 
Sim_Dst(Ai,Aj) are the source IP similarity and the 
target IP similarity respectively, these measures 



 

compute the common similar bits of two IP addresses 
from the left then the result is divided by 32; (2) 
Sim(Ai.DstIP,Aj.SrcIP) checks if Ai.DstIP equal to 
Aj.SrcIP, this feature is necessary because sometimes 
the attacker use one victim as a step stone to 
compromise other victims; (3) Ai.time ≤ Aj.time. 
 

4. Scenario Construction 
 

The proposed system composes of two phases. The 
first phase uses the modified LR parser to build 
scenarios, whereas the second phase tries to connect 
the related scenarios which may be separated.  

Like the lexical analyzer, the IDS triggers many 
separated attacks neglecting the relationships among 
them.  Moreover, the problem of scenario discovery 
seems to be like the problem of the parser which tries 
to find the correct sequence of tokens and to which 
grammar each statement belongs. 

 
The LR parser has stringent style, so we performed 

some modifications to make it flexible. These 
modifications are as follows. First, we have eliminated 
the error action because it is undesirable in scenario 
recognition process. Second, many SLR tables are 
used, instead of using one, to represents the scenarios. 
Finally, we used many stacks which are created 
dynamically depending on the alerts, and this can be 
shown in Fig. 1. 

Each scenario can be represented by a grammar or 
sometimes the grammar can contains some scenarios. 
The SLR table should be built for each grammar, it 
represents the scenarios templates. We denoted it as 
TPLT and the set of scenarios templates as STPLT.  

Definition 3. Given STPLT, the LR parser represents 
each resulted scenario by a stack. The stack STK is a 
sextuple = <V, State, References, SrsIP, DstIP, 
StepStone>, where State represents the current state of 
a finite machine, References is an array of alerts 

indices, and StepStone is the intermediate victims. The 
last three elements are the properties of the STK. The 
set of the STKs is denoted as SSTK. 

When a new alert becomes available, it is first 
checked against the existing SSTK using IP_Sim 
function and the State on the top of each STK. It can be 
added to more than one STK if the above conditions 
have frequently satisfied. We called this checking as 
STK_Selection. If the STK_Selection fails to find any 
STK, then a new STK will be created. This process can 
be shown in Fig. 2. 

 
One advantage of the proposed system is the 

capability of working in parallel where the STPLT can be 
partitioned and distributed over many processing units. 
In other words, each processing unit will have a subset 
of STPLT.  

The second phase tries to connect the related 
scenarios. Sometimes, the single scenario spread over 
more than one STK, so this phase connects them. In 
addition, this phase produces CGs which reflect the 
detected scenarios. 

Time complexity of the proposed system related to 
the number of alerts and the number of scenarios in the 
alerts. The time for processing each new alert with 
STK_Selection function is linear with SSTK. It is well 

Procedure Scenario_Recovery 
input: alerts in time order 
output: a set of scenarios 
method: 
              for each alert A∈T do { 
                if alert A related to network vulnerabilities then{   
                  idx()=STK_Selection(A); 
                  if empty(idx()) then { 
                      Create a new STKi ; 
                      Call LR_Parsing(A, STKi); } 
                 else 
                     for each STKj ∈ idx() do 
                        Call LR_Parsing(A, STKj); } } 
              Return set of STKs which contain accepted scenarios 
                           and related information to generate reports; 
 
Procedure LR_Parsing 
input: an alert A to be correlated, STK, STPLT 
output: updated STK 
method: 
              STAT = current state of STK; 
              Action = STPLT(STKID, STAT, A); 
              switch (Action) { 
                case “shift”:    Shift A to STK;  
                                        Update state of STK; break; 
                case “reduce”: R = the reduce rule; 
                                        Remove RHSS(s) of R from STK; 
                                        Insert LHSS of R on top of STK; 
                                        Update state of STK; break; 
                case “accept”: Direct STK to the second phase as  
                                        accepted scenario; 
                                        Remove STK from SSTK; } 
              Return updated STK or accepted scenario; 
 

Figure 2. The main procedures of the system 

 
Figure 1. The modified SLR parsing algorithm



 

known that LR parser has a linear time complexity [2]. 
So the total time complexity of scenario recovery is 
O(n*(STPLT+SSTK)) where n is the number of alerts. 

Two optimizations points can be noticed: First, 
TPLT is related to the network vulnerabilities and their 
numbers are limited. Some attack graph methods can 
generate the scenarios, which the network vulnerable 
to, automatically [6]. Second, the dealing with flooding 
alerts makes the performance of STK_Selection 
function decreasing as more and more alerts are 
received. Depending on site policy, they are either 
neglected (such as HP alerts) or aggregated or both. 
 
5. Empirical Results 
 

The experiments which were performed to evaluate 
our system are described in this section. The proposed 
system was tested on an AMD Athelon processor 2.01 
GHz with 512 RAM running Windows XP. Two set of 
experiments were conducted to test system 
effectiveness and performance, which are presented in 
sections 5.1 and 5.2 respectively.  

 
5.1. Effectiveness 
 

The objective of the first set of experiments is to 
demonstrate the effectiveness of the proposed 
algorithm in scenario recovery. The sensor alert report 
by RealSecure network sensor (Version 6.0), executed 
on the DARPA 2000 datasets, has been made available 
by researchers at North Carolina State University as a 
part of the TIAA project [12]. This sensor alert report 
was used in this set of experiments. 

The 2000 DARPA scenario specific datasets 
include LLDDOS 1.0 and LLDDOS 2.0.2. LLDDOS 
1.0 contains a series of attacks which was described in 
example 1. LLDDOS 2.0.2 includes a similar sequence 
of attacks run by a more sophisticated attacker. Four 
sets of experiments were performed, each with either 
the DMZ or the inside network traffic of one dataset. 

We mapped each alert type, reported by RealSecure 
IDS, to a subattack name using [10]. These subattack 
names are listed in section 3.1. Hereafter, we encoded 
them in grammars (i.e. scenarios) which used to build 
SLR tables. Then, these SLR tables and the alerts are 
fed to LR parser. Our experiments with this datasets 
show results like the described one in [1], validating 
the correctness of our correlation algorithm. 

The CG which is discovered from the inside zone 
of LLDDOS 1.0 can be seen in Fig. 3. Each node in 
this figure represents a grammar nonterminal, the text 
inside the nodes is the class of the alerts followed by 
their IDs. The edges represent the time order. The 
loops in the graph mean that either the attacker does 

some trials to succeed or some alerts have aggregated 
in this node. 

 
The CG which is discovered from the inside zone 

of LLDDOS 1.0 can be seen in Fig. 3. Each node in 
this figure represents a grammar nonterminal, the text 
inside the nodes is the class of the alerts followed by 
their IDs. The edges represent the time order. The 
loops in the graph mean that either the attacker does 
some trials to succeed or some alerts have aggregated. 

To test the effectiveness of our system, we used the 
measures of completeness and soundness defined in [1] 
for comparison purposes. The soundness measure (Rs) 
evaluates the rate of true alerts appearing in the CG. 
The completeness measure (Rc) looks for missing true 
alerts from CG. Equation (1) shows these measures. 
The results of the two measures are given in Table 1.  

 

# #
,

# #

correctly correlated alerts correctly correlated alerts
Rc Rs

related alerts correlated alerts
= =   (1) 

The missed alerts by IDS degrade the effectiveness 
which was the situation in our experiment, where the 
missed alerts by RealSecure IDS affect the 
completeness measure results as shown in Table 1. In 
addition, the experiments were produced good results 
for the soundness measure.  

 

 
Figure 3. The detected scenarios in the inside 

zone of LLDDOS 1.0 dataset

Table 1. Effectiveness of the proposed system
 

  LLDDOS 1.0    LLDDOS 2.0.2  
DMZ Inside DMZ Inside

# Correctly Correlated Alerts 57 44 6 16 
# Related Alerts 67 51 8 20 
# Correlated Alerts 57 44 6 20 
# Missed Alerts By Real Secure 10 7 2 4 
Completeness Measure Rc 85.07% 86.27% 75% 80% 
Soundness Measure Rs 100% 100% 100% 80% 



 

5.2. Performance 
 

The objective of this set of experiments is to 
evaluate the performance of the correlation engine and 
to show its ability to work in parallel. The performance 
metric includes the processing time of each alert. Snort 
IDS was used in this set of experiments. DEFCON 8 
Capture The Flag (CTF) datasets [13] were chosen 
which contains attacks launched by competing hackers. 

We applied the proposed system on the DEFCON 8 
CTF dataset. Unfortunately, due to the nature of the 
DEFCON 8 CTF dataset, we did not have any 
information about the attack scenarios within it.  Thus, 
we analyzed the resulted alerts depending on Snort 
signature database [9]. Hereafter, we encoded them in 
grammars which used to build SLR tables. About 40 
grammars have been written for this dataset, where 
some grammars contain more than one scenario. 

The DEFCON 8 CTF dataset was generated large 
amount of alerts. In section 4, we referred to the 
processing of flooding alerts which are either 
neglecting or aggregation. In this set of experiments, 
we neglected host probe alerts and Dos flooding alerts 
then aggregated the remaining alerts in two minutes 
time window. The remaining alerts (which are used in 
the experiments) are 33818 alerts. 

 

 
As can be seen in Fig. 4, the proposed system 

measures its own processing time per alert (averaged 
per 1000 alerts). Clearly, the average processing time 
scales with the number of received alerts and the 
number of scenarios in these alerts as expected. The 
increasing of scenarios in the alerts leads to increase 
the stacks number making the proposed system slows 
down. The DEFCON 8 CTF datasets were used here 
because they contain large number of scenarios and 
alerts. This datasets are unusual and contain huge 
number of attacks in a short period of time; as a 
consequence, our system will exhibit a better 
performance in real-world because attacks are usually 
less intensive. 

Moreover, we have compared the processing time 
for the proposed system to the delay between receiving 
two consecutive alerts from Snort. The DARPA 
datasets were used for this purpose. Fig. 5 shows the 
processing time per alert (averaged per 50 alerts). 
Obviously, the proposed system works faster than 
Snort in processing the entire dataset. 

 

 
We tested the capability of the proposed system to 

work in parallel. We used a cluster of seven nodes in 
our test with one node as a master; each node has the 
same properties noted at the beginning of section 5. 
We were partitioned and distributed the STPLT over the 
processing nodes and ran the system many times with 
different number of processing nodes. As shown in 
Fig. 6, the processing time is declined whenever the 
processing nodes are increased. We can conclude from 
these results that the proposed system has the 
capability to work in parallel. 

 

 
A natural way to correlate alerts is to search all the 

received alerts for those who prepare for a new alert. 
This nested loop procedure is assumed by many 
correlation methods [14]. As we have noted in section 
4, the total time complexity of the proposed system 

 
 
Figure 6. The relation between the number of 

processing units and the processing time  
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Figure 5. Processing time for DARPA dataset

 

 
 

Figure 4. The processing time of our system 



 

was O(n*(STPLT+SSTK)), which seems to be an attractive 
solution for the alerts correlation problem. 
 
6. Discussion 
 

From the literature, Ning et al. [1] have a proposed 
correlation method to extract attack strategies from 
intrusion alerts. The experimental results on the 
DARPA 2000 dataset and DEFCON 8 CTF dataset 
show that our graph representation results are similar 
to their results. However, there are some differences.  

The results of section 5 and the results in [1] can 
now be compared. The measures average values of 
DARPA experiments are presented in Table 2. It also 
shows the number of nodes and edges in the resulted 
CG of LLDDos 1.0 inside zone. As can be seen, the 
results indicate that, overall, our system is enhanced 
the completeness measure and the size of the CGs. 

 

 
The proposed system provides a high-level 

representation of correlated alerts which reveals the 
causal relationships among them. The generated CGs 
(cf. Section 5) clearly show the strategies behind these 
attacks. One advantage of our method is the 
compressing of the resulted CGs. Such an abstracted 
CGs provide a concise view of the real attacks, which 
helps the security analysts to understand the results of 
alert correlation.  

The contribution of this paper is three folds: First, 
the scenarios are represented by grammars which make 
the rules writing and updating an easy task. Second, the 
proposed system generates compressed and easy to 
understand CGs which reflects the attack scenarios. 
Finally, our method can tolerate missed attacks by IDS 
at the same time of correlation. 

It should be noted that our approach has several 
limitations. First, our method depends on the 
underlying IDSs to provide alerts. Second, our 
approach is not fully effective for the coordinated 
attacks in which many attackers cooperate to do some 
goals. Finally, it is worth mentioning that the results 
produced by our correlation engine are only as good as 
the classification information provided by the user. 
 
7. Conclusions  
 

This paper presented a method for constructing 
attack scenarios using compiler techniques. After 

representing the multistep attacks by CFGs, the 
modified LR parser was used to detect the scenarios 
presented in the alerts. The CFG makes the scenario 
writing and updating an easy task, it also describes 
multistep attacks explicitly. 
 
8. References 
 
[1] P. Ning, Y. Cui, D. S. Reeves, and D. Xu, "Techniques 
and tools for analyzing intrusion alerts," ACM Trans. 
Information and System Security, 7(2), 2004, pp. 274–318. 
 

[2] Aho A. V., R. Sethi, and J. D. Ullman, Compilers, 
Principles, Techniques, and Tools, Addison-Wesley 
Publishing Company, 1986. 
 

[3] O. M. Dain and R. K Cunningham, "Fusing a 
heterogeneous alert stream into scenarios," in Proc. 2001 
ACM Workshop on Data Mining for Security Applications, 
2001, pp. 231–235. 
 
[4] X. Qin and W. Lee, "Statistical causality analysis of 
INFOSEC alert data," in Proc. 6th International Symposium 
on Recent Advances in Intrusion Detection (RAID 2003), 
Pittsburgh, PA, Sep 2003, pp. 591–627. 
 
[5] A. Valdes and K. Skinner, "Probabilistic alert 
correlation," in Proc. Recent Advances in Intrusion 
Detection, LNCS 2212, 2001, pp. 54–68.  
 
[6] P. Ammann, D. Wijesekera, and S. Kaushik, "Scalable, 
graph-based network vulnerability analysis," in Proc. 9th 
ACM Conference on Computer and Communications 
Security (CCS’02), 2002, pp. 217–224. 
 

[7] M. Roesch, "Snort–lightweight intrusion detection for 
networks," in Proc. 1999 USENIX LISA Conference, 1999, 
pp. 229–238. 
 
[8] Internet Security Systems, RealSecure intrusion detection 
system, http://www.iss.net. 
 
[9] Sourcefire, Snort signature database, http://www.snor-
t.org/pub-bin/sigs.cgi, 2007. 
 
[10] Internet Security Systems, RealSecure signatures 
reference guide, http://documents.iss.net/literature/RealSecu 
re/RS_Signatures_6.0.pdf, 2001. 
 
[11] MIT Lincoln Lab., 2000 DARPA intrusion detection 
scenario specific datasets, http://www.ll.mit.edu/IST/ 
ideval/data/2000/2000_data _index.html. 
 

[12] P. Ning, “TIAA: a toolkit for intrusion alert analysis,” 
http://discovery.csc.ncsu.edu/software/correlator. 
 

[13] DEFCON captures the flag (CTF) contest, 
http://cctf.shmoo.com/data/cctf-defcon8/, 2000. 
 
[14] L. Wang, A. Liu, S. Jajodia, “Using attack graphs for 
correlating, hypothesizing, and predicting intrusion alerts”, 
Computer Communications, 29, 2006, pp. 2917–2933,. 
                                                        
1 This work was supported by 973 project no. (2007CB311101). 

Table 2. Comparison with the previous system
 

 Ning's system The proposed 
system 

Completeness Measure (avg.) 79.28% 81.59% 
Soundness Measure (avg.) 95.06% 95% 
Number of nodes 44 14 
Number of edges 153 26 


