

Multistep Attacks Extraction Using Compiler Techniques1

Safaa O. Al-Mamory, ZHANG Hongli
School of Computer Science,

Harbin Institute of technology,
Harbin, China

safaa_vb@yahoo.com, zhl@pact518.hit.edu.cn

Abstract

The Intrusion detection system (IDS) is a security

technology that attempts to identify network intrusions.
Defending against multistep intrusions which prepare
for each other is a challenging task. In this paper,
alerts classified into predefined classes. Then, the
Context-Free Grammar (CFG) was used to describe
the multistep attacks using alerts classes. Based on the
CFGs, the modified LR parser was recruited to
generate the parse trees of the scenarios presented in
the alerts. The experiments were performed on two
different sets of network traffic traces, using different
open-source and commercial IDSs. The detected
scenarios are represented by Correlation Graphs
(CGs). The experimental results show that the CFG
can describe multistep attacks explicitly and the
modified LR parser, based on the CFG, can construct
scenarios successfully.

1. Introduction

The study of IDS has become an important aspect
of network security. When the IDS detects a set of
attacks, it will generate many alerts referring to
security breaches. Unfortunately, the IDS can not
deduce anything from these separated attacks. As a
result, alert correlation is an important solution to link
separated attacks, to give alerts another meaning, and
to infer attack scenarios.

Alert correlation function is to find out the logical
relationships among the alerts. Attackers are likely to
launch a series of attacks against their targets.
Intelligent hackers are more likely to disguise their real
purpose by launching many other minor attacks. Alert
correlation is used to correlate alerts based on logical
relationships among the alerts. This function will
provide the security analysts with a great insight into
where the initial attacks came from and where they
actually end up.

An interesting method is the work of Ning et al. [1].
Ning et al. were a proposed alert correlation model
based on the observation that most intrusions consist of
many stages, with the early stages preparing for the
later ones. They were collected alerts from IDS,
correlated off-line, and tried to draw a big picture
(through CGs) of what happens in the network.
However, this method has overlooked, or unable to
resolve, the following shortcomings. First, the graph
explosion problem that occurs in the generated CGs
makes the resulted graphs complex and difficult to
understand. Second, huge number of rules used to draw
these graphs representing alert’s prerequisites and
consequences. And finally, the affects of the missed
attacks by IDS yield separated CGs.

The primary focus of this paper is on addressing
these disadvantages. We used the compiler techniques
[2] to recognize the scenarios in the raw alerts. Put
another way, after categorizing alerts into classes (i.e.
classification); the scenarios are represented by
context-free grammars. These grammars are used to
build LR tables. The LR tables and the raw alerts are
fed to LR parser trying to construct attack scenarios;
the standard LR parser algorithm is modified to meet
our requirements. The resulted scenarios visually
represented by correlation graphs. Instead of repairing
a broken scenario afterwards, our method can tolerate
missed attacks at the same time of correlation.

The remainder of this paper is organized as follows.
Section 2 presents related works. Section 3 states basic
concepts and assumptions. Section 4 proposes our
correlation engine. Section 5 gives the empirical
results. The discussion presents in section 6 and
section 7 concludes the paper.

2. Related Works

Many alert aggregation and correlation approaches
have recently been proposed with the goal of reducing
the false alerts rates of the IDSs and building attack
scenarios to recognize attack plans. Dain et al. [3] used

data mining approach to combine the alerts into
scenarios in real time. Qin et al. [4] presented an alert
correlation system combining a Bayesian correlation
with a statistical correlation. The probabilistic alert
correlation [5] based on the similarities between alerts
to correlate them. Several researchers have studied the
attack graph generation automatically [6]. The attack
graphs represent the possible paths the attackers may
take in intrusions.

With respect to the related works, in this paper, a
novel correlation method is proposed which uses
parsing techniques to extract attack scenarios from
alerts. To our best knowledge, the using of LR parser
techniques has not been addressed in the alert
correlation problem.

3. Preliminaries

This section reviews relevant concepts and states
our assumptions. Section 3.1 introduces classification
and section 3.2 presents our model to represent
scenarios. Section 3.3 discusses addresses similarity.

3.1. Alerts Classification

The alert classification scheme is designed to
categorize alerts into groups that most effectively
indicate their stages in multistage attacks. Each class
has its name indicating the general category; the set of
classes will be denoted as CLS. The CLS set contains
the following classes: enumeration (EN), host probe
(HP), service probe (SP), service compromise (SC),
user access (UA), root or administrator access (RAA),
DoS (DS), system compromise (SYC), sensitive data
gathering (SDG), active communication remote (ACR),
Trojan activity (TA), and DDoS (DDS). Many types of
Snort IDS [7] alerts and RealSecure IDS [8] alerts have
manually classified and their descriptions were taken
from [9], [10] respectively.

3.2. Scenarios Representation

Many attacks languages proposed to represent the
attacks and to facilitate correlation process. In this
paper, we have modeled the attacks using CFG.

Definition 1. A context-free grammar CFG is a
quadruple such that CFG = <N, T, P, S>, where N is a
finite set of nonterminals which belong to CLS and
they are usually start with capital letter, T is a set of
terminals representing the alerts and the terminals
usually start with small letter, P is a finite set of
productions, and S is the start symbol of CFG which
represents the scenario name; here unusually S∉N.

Definition 1 formally describes the grammar from
our point of view. An element in V =N ∪ T is called
grammar symbol. The productions in P are pairs of the
form X→α, where X ∈CLS and α∈V*. Put another
way, the left hand side symbol (LHSS) X is a
nonterminal, and the right hand side symbol (RHSS) α
is a string of grammar symbols. An empty right hand
side symbol (empty string) is denoted as an ε.

Example 1. Consider a scenario in which the attacker
probe the hosts to see which host is active, probe the
services, compromise a service, install a Trojan and
launch it, and finally use this Trojan to launch a DDos
attack. This scenario can be noted in DARPA dataset
[11]. It can simply be represented, assuming
RealSecure [8] alerts, in our model as follows:

Scenario → HP SP SC ACR TA DDS
HP → icmp_echo_request HP | ε
SP → sadmind_ping SP | ε
SC → admind SC

| sadmind_amslverify_overflow SC | ε
ACR → rsh ACR | ε
TA → mstream_zombie TA | ε
DDS → stream_dos

Some points can be noted from this grammar. First,
the order of the RHSS in the first rule specifies the
time order of the attacks. Second, we put the ε (i.e. the
empty string) in each rule to pass the missed attacks by
IDS. In addition, the passing of missed attacks leads to
generate a single CG instead of generating separated
CGs. Third, the attacker may try the same attack (or
other attacks from the same class) until he succeeds.
As a consequence, we put the LHSS after each
terminal to allow loops. Fourth, the DDS (the last rule)
presented without a loop and the ε rule assuming it is
neither can be missed nor duplicated (RealSecure
triggers one alert for this attack). Finally, the
frequently use of the ε makes this scenario capable of
accepting only the last attack. For this reason, a
combination of the first rule could solve this problem.

3.3. Addresses Similarity

An alert A can be characterized by a set of features.
Assume that A.fi represents the ith feature of an alert A.
These features are: alert type (or type for short), source
IP, Destination IP, and time stamp. The table of alerts
can be denoted as T. We consider only IPv4 addresses.

Definition 2. The addresses similarity between any
two alerts can be computed as follows
IP_Sim(Ai,Aj)=Sim_Src(Ai,Aj)+Sim_Dst(Ai,Aj)+Sim(Ai.
DstIP,Aj.SrcIP), where: (1) Sim_Src(Ai,Aj) and
Sim_Dst(Ai,Aj) are the source IP similarity and the
target IP similarity respectively, these measures

compute the common similar bits of two IP addresses
from the left then the result is divided by 32; (2)
Sim(Ai.DstIP,Aj.SrcIP) checks if Ai.DstIP equal to
Aj.SrcIP, this feature is necessary because sometimes
the attacker use one victim as a step stone to
compromise other victims; (3) Ai.time ≤ Aj.time.

4. Scenario Construction

The proposed system composes of two phases. The
first phase uses the modified LR parser to build
scenarios, whereas the second phase tries to connect
the related scenarios which may be separated.

Like the lexical analyzer, the IDS triggers many
separated attacks neglecting the relationships among
them. Moreover, the problem of scenario discovery
seems to be like the problem of the parser which tries
to find the correct sequence of tokens and to which
grammar each statement belongs.

The LR parser has stringent style, so we performed

some modifications to make it flexible. These
modifications are as follows. First, we have eliminated
the error action because it is undesirable in scenario
recognition process. Second, many SLR tables are
used, instead of using one, to represents the scenarios.
Finally, we used many stacks which are created
dynamically depending on the alerts, and this can be
shown in Fig. 1.

Each scenario can be represented by a grammar or
sometimes the grammar can contains some scenarios.
The SLR table should be built for each grammar, it
represents the scenarios templates. We denoted it as
TPLT and the set of scenarios templates as STPLT.

Definition 3. Given STPLT, the LR parser represents
each resulted scenario by a stack. The stack STK is a
sextuple = <V, State, References, SrsIP, DstIP,
StepStone>, where State represents the current state of
a finite machine, References is an array of alerts

indices, and StepStone is the intermediate victims. The
last three elements are the properties of the STK. The
set of the STKs is denoted as SSTK.

When a new alert becomes available, it is first
checked against the existing SSTK using IP_Sim
function and the State on the top of each STK. It can be
added to more than one STK if the above conditions
have frequently satisfied. We called this checking as
STK_Selection. If the STK_Selection fails to find any
STK, then a new STK will be created. This process can
be shown in Fig. 2.

One advantage of the proposed system is the

capability of working in parallel where the STPLT can be
partitioned and distributed over many processing units.
In other words, each processing unit will have a subset
of STPLT.

The second phase tries to connect the related
scenarios. Sometimes, the single scenario spread over
more than one STK, so this phase connects them. In
addition, this phase produces CGs which reflect the
detected scenarios.

Time complexity of the proposed system related to
the number of alerts and the number of scenarios in the
alerts. The time for processing each new alert with
STK_Selection function is linear with SSTK. It is well

Procedure Scenario_Recovery
input: alerts in time order
output: a set of scenarios
method:
 for each alert A∈T do {
 if alert A related to network vulnerabilities then{
 idx()=STK_Selection(A);
 if empty(idx()) then {
 Create a new STKi ;
 Call LR_Parsing(A, STKi); }
 else
 for each STKj ∈ idx() do
 Call LR_Parsing(A, STKj); } }
 Return set of STKs which contain accepted scenarios
 and related information to generate reports;

Procedure LR_Parsing
input: an alert A to be correlated, STK, STPLT
output: updated STK
method:
 STAT = current state of STK;
 Action = STPLT(STKID, STAT, A);
 switch (Action) {
 case “shift”: Shift A to STK;
 Update state of STK; break;
 case “reduce”: R = the reduce rule;
 Remove RHSS(s) of R from STK;
 Insert LHSS of R on top of STK;
 Update state of STK; break;
 case “accept”: Direct STK to the second phase as
 accepted scenario;
 Remove STK from SSTK; }
 Return updated STK or accepted scenario;

Figure 2. The main procedures of the system

Figure 1. The modified SLR parsing algorithm

known that LR parser has a linear time complexity [2].
So the total time complexity of scenario recovery is
O(n*(STPLT+SSTK)) where n is the number of alerts.

Two optimizations points can be noticed: First,
TPLT is related to the network vulnerabilities and their
numbers are limited. Some attack graph methods can
generate the scenarios, which the network vulnerable
to, automatically [6]. Second, the dealing with flooding
alerts makes the performance of STK_Selection
function decreasing as more and more alerts are
received. Depending on site policy, they are either
neglected (such as HP alerts) or aggregated or both.

5. Empirical Results

The experiments which were performed to evaluate
our system are described in this section. The proposed
system was tested on an AMD Athelon processor 2.01
GHz with 512 RAM running Windows XP. Two set of
experiments were conducted to test system
effectiveness and performance, which are presented in
sections 5.1 and 5.2 respectively.

5.1. Effectiveness

The objective of the first set of experiments is to
demonstrate the effectiveness of the proposed
algorithm in scenario recovery. The sensor alert report
by RealSecure network sensor (Version 6.0), executed
on the DARPA 2000 datasets, has been made available
by researchers at North Carolina State University as a
part of the TIAA project [12]. This sensor alert report
was used in this set of experiments.

The 2000 DARPA scenario specific datasets
include LLDDOS 1.0 and LLDDOS 2.0.2. LLDDOS
1.0 contains a series of attacks which was described in
example 1. LLDDOS 2.0.2 includes a similar sequence
of attacks run by a more sophisticated attacker. Four
sets of experiments were performed, each with either
the DMZ or the inside network traffic of one dataset.

We mapped each alert type, reported by RealSecure
IDS, to a subattack name using [10]. These subattack
names are listed in section 3.1. Hereafter, we encoded
them in grammars (i.e. scenarios) which used to build
SLR tables. Then, these SLR tables and the alerts are
fed to LR parser. Our experiments with this datasets
show results like the described one in [1], validating
the correctness of our correlation algorithm.

The CG which is discovered from the inside zone
of LLDDOS 1.0 can be seen in Fig. 3. Each node in
this figure represents a grammar nonterminal, the text
inside the nodes is the class of the alerts followed by
their IDs. The edges represent the time order. The
loops in the graph mean that either the attacker does

some trials to succeed or some alerts have aggregated
in this node.

The CG which is discovered from the inside zone

of LLDDOS 1.0 can be seen in Fig. 3. Each node in
this figure represents a grammar nonterminal, the text
inside the nodes is the class of the alerts followed by
their IDs. The edges represent the time order. The
loops in the graph mean that either the attacker does
some trials to succeed or some alerts have aggregated.

To test the effectiveness of our system, we used the
measures of completeness and soundness defined in [1]
for comparison purposes. The soundness measure (Rs)
evaluates the rate of true alerts appearing in the CG.
The completeness measure (Rc) looks for missing true
alerts from CG. Equation (1) shows these measures.
The results of the two measures are given in Table 1.

#
,

#

correctly correlated alerts correctly correlated alerts
Rc Rs

related alerts correlated alerts
= = (1)

The missed alerts by IDS degrade the effectiveness
which was the situation in our experiment, where the
missed alerts by RealSecure IDS affect the
completeness measure results as shown in Table 1. In
addition, the experiments were produced good results
for the soundness measure.

Figure 3. The detected scenarios in the inside

zone of LLDDOS 1.0 dataset

Table 1. Effectiveness of the proposed system

 LLDDOS 1.0 LLDDOS 2.0.2
DMZ Inside DMZ Inside

Correctly Correlated Alerts 57 44 6 16
Related Alerts 67 51 8 20
Correlated Alerts 57 44 6 20
Missed Alerts By Real Secure 10 7 2 4
Completeness Measure Rc 85.07% 86.27% 75% 80%
Soundness Measure Rs 100% 100% 100% 80%

5.2. Performance

The objective of this set of experiments is to
evaluate the performance of the correlation engine and
to show its ability to work in parallel. The performance
metric includes the processing time of each alert. Snort
IDS was used in this set of experiments. DEFCON 8
Capture The Flag (CTF) datasets [13] were chosen
which contains attacks launched by competing hackers.

We applied the proposed system on the DEFCON 8
CTF dataset. Unfortunately, due to the nature of the
DEFCON 8 CTF dataset, we did not have any
information about the attack scenarios within it. Thus,
we analyzed the resulted alerts depending on Snort
signature database [9]. Hereafter, we encoded them in
grammars which used to build SLR tables. About 40
grammars have been written for this dataset, where
some grammars contain more than one scenario.

The DEFCON 8 CTF dataset was generated large
amount of alerts. In section 4, we referred to the
processing of flooding alerts which are either
neglecting or aggregation. In this set of experiments,
we neglected host probe alerts and Dos flooding alerts
then aggregated the remaining alerts in two minutes
time window. The remaining alerts (which are used in
the experiments) are 33818 alerts.

As can be seen in Fig. 4, the proposed system

measures its own processing time per alert (averaged
per 1000 alerts). Clearly, the average processing time
scales with the number of received alerts and the
number of scenarios in these alerts as expected. The
increasing of scenarios in the alerts leads to increase
the stacks number making the proposed system slows
down. The DEFCON 8 CTF datasets were used here
because they contain large number of scenarios and
alerts. This datasets are unusual and contain huge
number of attacks in a short period of time; as a
consequence, our system will exhibit a better
performance in real-world because attacks are usually
less intensive.

Moreover, we have compared the processing time
for the proposed system to the delay between receiving
two consecutive alerts from Snort. The DARPA
datasets were used for this purpose. Fig. 5 shows the
processing time per alert (averaged per 50 alerts).
Obviously, the proposed system works faster than
Snort in processing the entire dataset.

We tested the capability of the proposed system to

work in parallel. We used a cluster of seven nodes in
our test with one node as a master; each node has the
same properties noted at the beginning of section 5.
We were partitioned and distributed the STPLT over the
processing nodes and ran the system many times with
different number of processing nodes. As shown in
Fig. 6, the processing time is declined whenever the
processing nodes are increased. We can conclude from
these results that the proposed system has the
capability to work in parallel.

A natural way to correlate alerts is to search all the

received alerts for those who prepare for a new alert.
This nested loop procedure is assumed by many
correlation methods [14]. As we have noted in section
4, the total time complexity of the proposed system

Figure 6. The relation between the number of

processing units and the processing time

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2

0 2 4 6 8 10 12 14

No. of processed alerts (avg per 50 alerts)

Pr
oc

es
si

ng
 T

im
e

(s
)

Snort
The Proposed System

Figure 5. Processing time for DARPA dataset

Figure 4. The processing time of our system

was O(n*(STPLT+SSTK)), which seems to be an attractive
solution for the alerts correlation problem.

6. Discussion

From the literature, Ning et al. [1] have a proposed
correlation method to extract attack strategies from
intrusion alerts. The experimental results on the
DARPA 2000 dataset and DEFCON 8 CTF dataset
show that our graph representation results are similar
to their results. However, there are some differences.

The results of section 5 and the results in [1] can
now be compared. The measures average values of
DARPA experiments are presented in Table 2. It also
shows the number of nodes and edges in the resulted
CG of LLDDos 1.0 inside zone. As can be seen, the
results indicate that, overall, our system is enhanced
the completeness measure and the size of the CGs.

The proposed system provides a high-level

representation of correlated alerts which reveals the
causal relationships among them. The generated CGs
(cf. Section 5) clearly show the strategies behind these
attacks. One advantage of our method is the
compressing of the resulted CGs. Such an abstracted
CGs provide a concise view of the real attacks, which
helps the security analysts to understand the results of
alert correlation.

The contribution of this paper is three folds: First,
the scenarios are represented by grammars which make
the rules writing and updating an easy task. Second, the
proposed system generates compressed and easy to
understand CGs which reflects the attack scenarios.
Finally, our method can tolerate missed attacks by IDS
at the same time of correlation.

It should be noted that our approach has several
limitations. First, our method depends on the
underlying IDSs to provide alerts. Second, our
approach is not fully effective for the coordinated
attacks in which many attackers cooperate to do some
goals. Finally, it is worth mentioning that the results
produced by our correlation engine are only as good as
the classification information provided by the user.

7. Conclusions

This paper presented a method for constructing
attack scenarios using compiler techniques. After

representing the multistep attacks by CFGs, the
modified LR parser was used to detect the scenarios
presented in the alerts. The CFG makes the scenario
writing and updating an easy task, it also describes
multistep attacks explicitly.

8. References

[1] P. Ning, Y. Cui, D. S. Reeves, and D. Xu, "Techniques
and tools for analyzing intrusion alerts," ACM Trans.
Information and System Security, 7(2), 2004, pp. 274–318.

[2] Aho A. V., R. Sethi, and J. D. Ullman, Compilers,
Principles, Techniques, and Tools, Addison-Wesley
Publishing Company, 1986.

[3] O. M. Dain and R. K Cunningham, "Fusing a
heterogeneous alert stream into scenarios," in Proc. 2001
ACM Workshop on Data Mining for Security Applications,
2001, pp. 231–235.

[4] X. Qin and W. Lee, "Statistical causality analysis of
INFOSEC alert data," in Proc. 6th International Symposium
on Recent Advances in Intrusion Detection (RAID 2003),
Pittsburgh, PA, Sep 2003, pp. 591–627.

[5] A. Valdes and K. Skinner, "Probabilistic alert
correlation," in Proc. Recent Advances in Intrusion
Detection, LNCS 2212, 2001, pp. 54–68.

[6] P. Ammann, D. Wijesekera, and S. Kaushik, "Scalable,
graph-based network vulnerability analysis," in Proc. 9th
ACM Conference on Computer and Communications
Security (CCS’02), 2002, pp. 217–224.

[7] M. Roesch, "Snort–lightweight intrusion detection for
networks," in Proc. 1999 USENIX LISA Conference, 1999,
pp. 229–238.

[8] Internet Security Systems, RealSecure intrusion detection
system, http://www.iss.net.

[9] Sourcefire, Snort signature database, http://www.snor-
t.org/pub-bin/sigs.cgi, 2007.

[10] Internet Security Systems, RealSecure signatures
reference guide, http://documents.iss.net/literature/RealSecu
re/RS_Signatures_6.0.pdf, 2001.

[11] MIT Lincoln Lab., 2000 DARPA intrusion detection
scenario specific datasets, http://www.ll.mit.edu/IST/
ideval/data/2000/2000_data _index.html.

[12] P. Ning, “TIAA: a toolkit for intrusion alert analysis,”
http://discovery.csc.ncsu.edu/software/correlator.

[13] DEFCON captures the flag (CTF) contest,
http://cctf.shmoo.com/data/cctf-defcon8/, 2000.

[14] L. Wang, A. Liu, S. Jajodia, “Using attack graphs for
correlating, hypothesizing, and predicting intrusion alerts”,
Computer Communications, 29, 2006, pp. 2917–2933,.

1 This work was supported by 973 project no. (2007CB311101).

Table 2. Comparison with the previous system

 Ning's system The proposed
system

Completeness Measure (avg.) 79.28% 81.59%
Soundness Measure (avg.) 95.06% 95%
Number of nodes 44 14
Number of edges 153 26

